Intermediate Mathematics

Divergence and Curl

R Horan \& M Lavelle

The aim of this package is to provide a short self assessment programme for students who would like to be able to calculate divergences and curls in vector calculus.

Copyright © 2004 rhoran@plymouth.ac.uk, mlavelle@plymouth.ac.uk Last Revision Date: September 29, 2004

Table of Contents

1. Introduction (Grad)
2. Divergence (Div)
3. Curl
4. Final Quiz

Solutions to Exercises
Solutions to Quizzes

The full range of these packages and some instructions, should they be required, can be obtained from our web page Mathematics Support Materials.

1. Introduction (Grad)

The vector differential operator $\boldsymbol{\nabla}$, called "del" or "nabla", is defined in three dimensions to be:

$$
\boldsymbol{\nabla}=\frac{\partial}{\partial x} \boldsymbol{i}+\frac{\partial}{\partial y} \boldsymbol{j}+\frac{\partial}{\partial z} \boldsymbol{k} .
$$

Note that these are partial derivatives!
If a scalar function, $f(x, y, z)$, is defined and differentiable at all points in some region, then f is a differentiable scalar field. The del vector operator, $\boldsymbol{\nabla}$, may be applied to scalar fields and the result, ∇f, is a vector field. It is called the gradient of f (see the package on Gradients and Directional Derivatives).

Quiz As a revision exercise, choose the gradient of the scalar field $f(x, y, z)=x y^{2}-y z$.
(a) $\boldsymbol{i}+(2 x-z) \boldsymbol{j}-y \boldsymbol{k}$,
(b) $2 x y \boldsymbol{i}+2 x y \boldsymbol{j}+y \boldsymbol{k}$,
(c) $y^{2} \boldsymbol{i}-z \boldsymbol{j}-y \boldsymbol{k}$,
(d) $y^{2} \boldsymbol{i}+(2 x y-z) \boldsymbol{j}-y \boldsymbol{k}$.

The vector operator ∇ may also be allowed to act upon vector fields. Two different ways in which it may act, the subject of this package, are extremely important in mathematics, science and engineering. We will first briefly review some useful properties of vectors.

Consider the (three dimensional) vector, $\boldsymbol{a}=a_{1} \boldsymbol{i}+a_{2} \boldsymbol{j}+a_{3} \boldsymbol{k}$. We may also write this as $\boldsymbol{a}=\left(a_{1}, a_{2}, a_{3}\right)$. If we multiply it by a constant c, then every component of the vector is multiplied by c :

$$
c \boldsymbol{a}=\boldsymbol{a} c=\left(c a_{1}, c a_{2}, c a_{3}\right) .
$$

If we introduce a second vector, $\boldsymbol{b}=\left(b_{1}, b_{2}, b_{3}\right)$, then we recall that there are two different ways of multiplying vectors together, the scalar and vector products.

The scalar product (also called dot product) is defined by:

$$
\boldsymbol{a} \cdot \boldsymbol{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} .
$$

It is a scalar (as the name scalar product implies).

Quiz Select the scalar product of $\boldsymbol{a}=(1,2,3)$ and $\boldsymbol{b}=(3,-2,1)$.
(a) 2 ,
(b) 10 ,
(c) $3 x-4 y+3 z$,
(d) 4 .

The vector product (or cross product) is defined by:

$$
\begin{aligned}
\boldsymbol{a} \times \boldsymbol{b} & =\left(a_{2} b_{3}-a_{3} b_{2}\right) \boldsymbol{i}-\left(a_{1} b_{3}-a_{3} b_{1}\right) \boldsymbol{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \boldsymbol{k} \\
& =\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| .
\end{aligned}
$$

It is a vector (as the name vector product implies). Note that the second line is a useful shorthand for the first.

Quiz Choose the vector product of $\boldsymbol{a}=(1,2,3)$ and $\boldsymbol{b}=(3,-2,1)$.
(a) $8 \boldsymbol{i}-8 \boldsymbol{j}-8 \boldsymbol{k}$,
(b) $-4 \boldsymbol{i}-10 \boldsymbol{j}+4 \boldsymbol{k}$,
(c) $8 \boldsymbol{i}+8 \boldsymbol{j}-8 \boldsymbol{k}$,
(d) $8 \boldsymbol{i}-10 \boldsymbol{j}-8 \boldsymbol{k}$.

2. Divergence (Div)

If $\boldsymbol{F}(x, y)$ is a vector field, then its divergence is written as $\operatorname{div} \boldsymbol{F}(x, y)=\boldsymbol{\nabla} \cdot \boldsymbol{F}(\boldsymbol{r})$ which in two dimensions is:

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \boldsymbol{F}(x, y) & =\left(\frac{\partial}{\partial x} \boldsymbol{i}+\frac{\partial}{\partial y} \boldsymbol{j}\right) \cdot\left(F_{1}(x, y) \boldsymbol{i}+F_{2}(x, y) \boldsymbol{j}\right) \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}
\end{aligned}
$$

It is obtained by taking the scalar product of the vector operator $\boldsymbol{\nabla}$ applied to the vector field $\boldsymbol{F}(x, y)$. The divergence of a vector field is a scalar field.
Example 2 The divergence of $\boldsymbol{F}(x, y)=3 x^{2} \boldsymbol{i}+2 y \boldsymbol{j}$ is:

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \boldsymbol{F}(x, y) & =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y} \\
& =\frac{\partial}{\partial x}\left(3 x^{2}\right)+\frac{\partial}{\partial y}(2 y)=6 x+2
\end{aligned}
$$

Quiz Select the divergence of $\boldsymbol{F}(x, y)=\frac{x}{y} \boldsymbol{i}+(2 x-3 y) \boldsymbol{j}$.
(a) $\frac{1}{y}-3$,
(b) $-\frac{x}{y^{2}}+2$,
(c) $\frac{1}{y}-\frac{x}{y^{2}}$,
(d) -2 .

The definition of the divergence may be directly extended to vector fields defined in three dimensions, $\boldsymbol{F}(x, y, z)=F_{1} \boldsymbol{i}+F_{2} \boldsymbol{j}+F_{3} \boldsymbol{k}$:

$$
\boldsymbol{\nabla} \cdot \boldsymbol{F}(x, y, z)=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}
$$

Exercise 1. Calculate the divergence of the vector fields $\boldsymbol{F}(x, y)$ and $\boldsymbol{G}(x, y, z)$ (click on the green letters for the solutions).
(a) $\boldsymbol{F}=x \boldsymbol{i}+y \boldsymbol{j}$,
(b) $\boldsymbol{F}=y^{3} \boldsymbol{i}+x y \boldsymbol{j}$,
(c) $\boldsymbol{F}=3 x^{2} \boldsymbol{i}-6 x y \boldsymbol{j}$,
(d) $\boldsymbol{G}=x^{2} \boldsymbol{i}+2 z \boldsymbol{j}-y \boldsymbol{k}$,
(e) $\boldsymbol{G}=\frac{4 y}{x^{2}} \boldsymbol{i}+\sin (y) \boldsymbol{j}+3 \boldsymbol{k}$,
(f) $\boldsymbol{G}=\mathrm{e}^{x} \boldsymbol{i}+\ln (x y) \boldsymbol{j}+\mathrm{e}^{x y z} \boldsymbol{k}$.

3. Curl

The curl of a vector field, $\boldsymbol{F}(x, y, z)$, in three dimensions may be written $\operatorname{curl} \boldsymbol{F}(x, y, z)=\boldsymbol{\nabla} \times \boldsymbol{F}(x, y, z)$, i.e.:

$$
\begin{aligned}
\boldsymbol{\nabla} \times \boldsymbol{F}(x, y, z) & =\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right) \boldsymbol{i}-\left(\frac{\partial F_{3}}{\partial x}-\frac{\partial F_{1}}{\partial z}\right) \boldsymbol{j}+\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \boldsymbol{k} \\
& =\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{1} & F_{2} & F_{3}
\end{array}\right| .
\end{aligned}
$$

It is obtained by taking the vector product of the vector operator $\boldsymbol{\nabla}$ applied to the vector field $\boldsymbol{F}(x, y, z)$. The second line is again a formal shorthand. The curl of a vector field is a vector field.
N.B. $\boldsymbol{\nabla} \times \boldsymbol{F}$ is sometimes called the rotation of \boldsymbol{F} and written $\operatorname{rot} \boldsymbol{F}$.

Example 3 The curl of $\boldsymbol{F}(x, y, z)=3 x^{2} \boldsymbol{i}+2 z \boldsymbol{j}-x \boldsymbol{k}$ is:

$$
\begin{aligned}
\boldsymbol{\nabla} \times \boldsymbol{F}= & \left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
3 x^{2} & 2 z & -x
\end{array}\right| \\
= & \left(\frac{\partial(-x)}{\partial y}-\frac{\partial(2 z)}{\partial z}\right) \boldsymbol{i}-\left(\frac{\partial(-x)}{\partial x}-\frac{\partial\left(3 x^{2}\right)}{\partial z}\right) \boldsymbol{j} \\
& \quad+\left(\frac{\partial(2 z)}{\partial x}-\frac{\partial\left(3 x^{2}\right)}{\partial y}\right) \boldsymbol{k} \\
= & (0-2) \boldsymbol{i}-(-1-0) \boldsymbol{j}+(0-0) \boldsymbol{k} \\
= & -2 \boldsymbol{i}+\boldsymbol{j} .
\end{aligned}
$$

Quiz Which of the following is the curl of $\boldsymbol{F}(x, y, z)=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}$?
(a) $2 \boldsymbol{i}-2 \boldsymbol{j}+2 \boldsymbol{k}$,
(b) $x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}$,
(c) 0 ,
(d) $\boldsymbol{i}+\boldsymbol{j}+\boldsymbol{k}$.

Exercise 2. Calculate the curl of the following vector fields $\boldsymbol{F}(x, y, z)$ (click on the green letters for the solutions).
(a) $\boldsymbol{F}=x \boldsymbol{i}-y \boldsymbol{j}+z \boldsymbol{k}$,
(b) $\boldsymbol{F}=y^{3} \boldsymbol{i}+x y \boldsymbol{j}-z \boldsymbol{k}$,
(c) $\boldsymbol{F}=\frac{x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}$,
(d) $\boldsymbol{F}=x^{2} \boldsymbol{i}+2 z \boldsymbol{j}-y \boldsymbol{k}$.

Here is a review exercise before the final quiz.
Exercise 3. Let f be a scalar field and $\boldsymbol{F}(x, y, z)$ and $\boldsymbol{G}(x, y, z)$ be vector fields. What, if anything, is wrong with each of the following expressions (click on the green letters for the solutions)?
(a) $\nabla f=x^{3}-4 y$,
(b) $\boldsymbol{\nabla} \cdot \boldsymbol{F}=\boldsymbol{i}-x^{2} y \boldsymbol{j}-z \boldsymbol{k}$,
(c) $\boldsymbol{\nabla} \times \boldsymbol{G}=\boldsymbol{\nabla} \cdot \boldsymbol{F}$.

4. Final Quiz

Begin Quiz Choose the solutions from the options given.

1. Select the divergence of $\boldsymbol{G}(x, y, z)=2 x^{3} \boldsymbol{i}-3 x y \boldsymbol{j}+3 x^{2} z \boldsymbol{k}$?
(a) $9 x^{2}-3 x$,
(b) $6 x^{2}+3 x$,
(c) 0 ,
(d) $3 x^{2}-3 x$,
2. Select the divergence of \boldsymbol{r} / r^{3}, where $r=|\boldsymbol{r}|$ and $\boldsymbol{r}=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}$.
(a) $\frac{-1}{r^{3}}$,
(b) 0 ,
(c) $\frac{-2}{r^{3}}$,
(d) $\frac{3}{r^{3}}$.
3. Choose the curl of $\boldsymbol{F}(x, y, z)=x^{2} \boldsymbol{i}+x y z \boldsymbol{j}-z \boldsymbol{k}$ at the point $(2,1,-2)$.
(a) $2 \boldsymbol{i}+2 \boldsymbol{k}$,
(b) $-2 \boldsymbol{i}-2 \boldsymbol{j}$,
(c) $4 \boldsymbol{i}-4 \boldsymbol{j}+2 \boldsymbol{k}$,
(d) $-2 \boldsymbol{i}-2 \boldsymbol{k}$.
4. Select the irrotational vector field (i.e., whose curl is zero)
(a) $y z \boldsymbol{i}-2 x z \boldsymbol{j}+x y z \boldsymbol{k}$,
(b) $y z \boldsymbol{i}+x z \boldsymbol{j}+x z \boldsymbol{k}$,
(c) $z \boldsymbol{i}-z^{2} \boldsymbol{j}+y z \boldsymbol{k}$,
(d) $y \boldsymbol{i}+(x-z) \boldsymbol{j}-y \boldsymbol{k}$.

End Quiz Score: Correct

Solutions to Exercises

Exercise 1(a) The vector field $\boldsymbol{F}=x \boldsymbol{i}+y \boldsymbol{j}$ has components

$$
F_{1}=x, \quad F_{2}=y,
$$

and its divergence is

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \boldsymbol{F}(x, y) & =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y} \\
& =\frac{\partial}{\partial x} x+\frac{\partial}{\partial y} y=1+1=2
\end{aligned}
$$

Click on the green square to return

Exercise 1(b) If the vector field is $\boldsymbol{F}=y^{3} \boldsymbol{i}+x y \boldsymbol{j}$, its components are

$$
F_{1}=y^{3}, \quad F_{2}=x y
$$

and its divergence is

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \boldsymbol{F}(x, y) & =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y} \\
& =\frac{\partial}{\partial x} y^{3}+\frac{\partial}{\partial y} x y=0+x=x
\end{aligned}
$$

Click on the green square to return

Exercise 1(c) If the vector field is $\boldsymbol{F}=3 x^{2} \boldsymbol{i}-6 x y \boldsymbol{j}$, its components are

$$
F_{1}=3 x^{2}, \quad F_{2}=-6 x y,
$$

and its divergence is

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \boldsymbol{F}(x, y) & =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y} \\
& =\frac{\partial}{\partial x} 3 x^{2}+\frac{\partial}{\partial y}(-6 x y)=6 x-6 x=0 .
\end{aligned}
$$

N.B. A vector field with vanishing divergence is called a solenoidal vector field.
Click on the green square to return

Exercise 1(d)

The vector field $\boldsymbol{G}=x^{2} \boldsymbol{i}+2 z \boldsymbol{j}-y \boldsymbol{k}$ has components

$$
G_{1}=x^{2}, \quad G_{2}=2 z, \quad G_{3}=-y
$$

and its divergence is

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \boldsymbol{G} & =\frac{\partial G_{1}}{\partial x}+\frac{\partial G_{2}}{\partial y}+\frac{\partial G_{3}}{\partial z} \\
& =\frac{\partial}{\partial x} x^{2}+\frac{\partial}{\partial y}(2 z)+\frac{\partial}{\partial z}(-y)=2 x+0+0=2 x .
\end{aligned}
$$

Click on the green square to return

Exercise 1(e)

Consider the vector field $\boldsymbol{G}=\frac{4 y}{x^{2}} \boldsymbol{i}+\sin (y) \boldsymbol{j}+3 \boldsymbol{k}$. Its components are

$$
G_{1}=\frac{4 y}{x^{2}}, \quad G_{2}=\sin (y), \quad G_{3}=3
$$

and its divergence is

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \boldsymbol{G} & =\frac{\partial G_{1}}{\partial x}+\frac{\partial G_{2}}{\partial y}+\frac{\partial G_{3}}{\partial z} \\
& =\frac{\partial}{\partial x}\left(\frac{4 y}{x^{2}}\right)+\frac{\partial}{\partial y} \sin (y)+\frac{\partial}{\partial z} 3 \\
& =4 y \times \frac{\partial}{\partial x} x^{-2}+\cos (y)=4 y \times(-2) x^{-2-1}+\cos (y) \\
& =-8 y x^{-3}+\cos (y)=-\frac{8 y}{x^{3}}+\cos (y)
\end{aligned}
$$

Click on the green square to return

Exercise 1(f) Consider the vector field $\boldsymbol{G}=\mathrm{e}^{x} \boldsymbol{i}+\ln (x y) \boldsymbol{j}+\mathrm{e}^{x y z} \boldsymbol{k}$. Its components are

$$
G_{1}=\mathrm{e}^{x}, \quad G_{2}=\ln (x y), \quad G_{3}=\mathrm{e}^{x y z}
$$

and its divergence is

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \boldsymbol{G} & =\frac{\partial G_{1}}{\partial x}+\frac{\partial G_{2}}{\partial y}+\frac{\partial G_{3}}{\partial z} \\
& =\frac{\partial}{\partial x} \mathrm{e}^{x}+\frac{\partial}{\partial y} \ln (x y)+\frac{\partial}{\partial z} \mathrm{e}^{x y z} \\
& =\mathrm{e}^{x}+\frac{\partial}{\partial y}(\ln (x)+\ln (y))+\mathrm{e}^{x y z} \times \frac{\partial}{\partial z}(x y z) \\
& =\mathrm{e}^{x}+\frac{1}{y}+x y \mathrm{e}^{x y z}
\end{aligned}
$$

Click on the green square to return

Exercise 2(a)

The components of the vector field $\boldsymbol{F}=x \boldsymbol{i}-y \boldsymbol{j}+z \boldsymbol{k}$ are

$$
F_{1}=x, \quad F_{2}=-y, \quad F_{3}=z
$$

and its curl is:

$$
\begin{aligned}
\boldsymbol{\nabla} \times \boldsymbol{F} & =\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right) \boldsymbol{i}-\left(\frac{\partial F_{3}}{\partial x}-\frac{\partial F_{1}}{\partial z}\right) \boldsymbol{j}+\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \boldsymbol{k} \\
& =\left(\frac{\partial(z)}{\partial y}-\frac{\partial(-y)}{\partial z}\right) \boldsymbol{i}-\left(\frac{\partial(z)}{\partial x}-\frac{\partial(x)}{\partial z}\right) \boldsymbol{j}+\left(\frac{\partial(-y)}{\partial x}-\frac{\partial(x)}{\partial y}\right) \boldsymbol{k} \\
& =0 \boldsymbol{i}-0 \boldsymbol{j}+0 \boldsymbol{k}=0
\end{aligned}
$$

Therefore the vector field $\boldsymbol{F}=x \boldsymbol{i}-y \boldsymbol{j}+z \boldsymbol{k}$ is an irrotational vector field.

Click on the green square to return

Exercise 2(b)

The components of the vector field $\boldsymbol{F}=y^{3} \boldsymbol{i}+x y \boldsymbol{j}-z \boldsymbol{k}$ are

$$
F_{1}=y^{3}, \quad F_{2}=x y, \quad F_{3}=-z
$$

and its curl is:

$$
\begin{aligned}
\boldsymbol{\nabla} \times \boldsymbol{F}= & \left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right) \boldsymbol{i}-\left(\frac{\partial F_{3}}{\partial x}-\frac{\partial F_{1}}{\partial z}\right) \boldsymbol{j}+\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \boldsymbol{k} \\
= & \left(\frac{\partial(-z)}{\partial y}-\frac{\partial(x y)}{\partial z}\right) \boldsymbol{i}-\left(\frac{\partial(-z)}{\partial x}-\frac{\partial\left(y^{3}\right)}{\partial z}\right) \boldsymbol{j} \\
& +\left(\frac{\partial(x y)}{\partial x}-\frac{\partial\left(y^{3}\right)}{\partial y}\right) \boldsymbol{k} \\
= & 0 \boldsymbol{i}-0 \boldsymbol{j}+\left(y-3 y^{2}\right) \boldsymbol{k}=\left(y-3 y^{2}\right) \boldsymbol{k}
\end{aligned}
$$

i.e., the curl vector is in the \boldsymbol{k} direction.

Click on the green square to return

Exercise 2(c) The components of the vector field $\boldsymbol{F}=\frac{x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}$ are $F_{1}=\frac{x}{r}, \quad F_{2}=\frac{y}{r}, \quad F_{3}=\frac{z}{r}$, where $r=\sqrt{x^{2}+y^{2}+z^{2}}$. The \boldsymbol{i} component of $\boldsymbol{\nabla} \times \boldsymbol{F}$, is:

$$
\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}=\frac{\partial}{\partial y}\left(\frac{z}{r}\right)-\frac{\partial}{\partial z}\left(\frac{y}{r}\right)=z \frac{\partial}{\partial y}\left(\frac{1}{r}\right)-y \frac{\partial}{\partial z}\left(\frac{1}{r}\right)
$$

The derivative of $\frac{1}{r}$ with respect to y is

$$
\frac{\partial}{\partial y}\left(\frac{1}{r}\right)=\frac{\partial}{\partial y} \frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}}=\left(-\frac{1}{2}\right) \times \frac{2 y}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}=-\frac{y}{r^{3}} .
$$

and similarly $\frac{\partial}{\partial z}\left(\frac{1}{r}\right)=-\frac{z}{r^{3}}$. Thus the i component of the curl is $\left(-\frac{z y}{r^{3}}\right)-\left(-\frac{y z}{r^{3}}\right)=0$. It may be checked that the \boldsymbol{j} and \boldsymbol{k} components of the curl also vanish.
Click on the green square to return

Exercise 2(d)

The components of the vector field $\boldsymbol{F}=x^{2} \boldsymbol{i}+2 z \boldsymbol{j}-y \boldsymbol{k}$ are

$$
F_{1}=x^{2}, \quad F_{2}=2 z, \quad F_{3}=-y
$$

and its curl is:

$$
\begin{aligned}
\boldsymbol{\nabla} \times \boldsymbol{F}= & \left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right) \boldsymbol{i}-\left(\frac{\partial F_{3}}{\partial x}-\frac{\partial F_{1}}{\partial z}\right) \boldsymbol{j}+\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \boldsymbol{k} \\
= & \left(\frac{\partial(-y)}{\partial y}-\frac{\partial(2 z)}{\partial z}\right) \boldsymbol{i}-\left(\frac{\partial(-y)}{\partial x}-\frac{\partial\left(x^{2}\right)}{\partial z}\right) \boldsymbol{j} \\
& +\left(\frac{\partial(2 z)}{\partial x}-\frac{\partial\left(x^{2}\right)}{\partial y}\right) \boldsymbol{k} \\
= & (-1-2) \boldsymbol{i}-(0-0) \boldsymbol{j}+(0-0) \boldsymbol{k}=-3 \boldsymbol{i} .
\end{aligned}
$$

Click on the green square to return

Exercise 3(a)

The formula

$$
\nabla f=x^{3}-4 y
$$

must be incorrect because the gradient of a scalar function is a vector field by definition, while the expression on the right hand side of this equation is a scalar.
Click on the green square to return

Exercise 3(b)

The equation

$$
\boldsymbol{\nabla} \cdot \boldsymbol{F}=\boldsymbol{i}-x^{2} y \boldsymbol{j}-z \boldsymbol{k}
$$

must be incorrect, because the divergence of a vector field must be a scalar by definition but the right hand side of the equation is a vector.
Click on the green square to return

Exercise 3(c)

The equation

$$
\nabla \times G=\nabla \cdot F
$$

must be incorrect because its left hand side is a vector field, a curl, while its right hand side is a scalar function, a divergence.
Click on the green square to return

Solutions to Quizzes

Solution to Quiz:
If the scalar field is $f(x, y, z)=x y^{2}-y z$, its gradient is

$$
\begin{aligned}
\nabla f= & \frac{\partial}{\partial x}\left(x y^{2}-y z\right) \boldsymbol{i}+\frac{\partial}{\partial y}\left(x y^{2}-y z\right) \boldsymbol{j} \\
& +\frac{\partial}{\partial z}\left(x y^{2}-y z\right) \boldsymbol{k} \\
= & y^{2} \times \frac{\partial}{\partial x}(x) \boldsymbol{i}+\left[x \times \frac{\partial}{\partial y}\left(y^{2}\right)-z \times \frac{\partial}{\partial y}(y)\right] \boldsymbol{j} \\
& +(-y) \times \frac{\partial}{\partial z}(z) \boldsymbol{k} \\
= & y^{2} \boldsymbol{i}+(2 x y-z) \boldsymbol{j}-y \boldsymbol{k} .
\end{aligned}
$$

End Quiz

Solution to Quiz:

The scalar product of the two vectors

$$
\boldsymbol{a}=(1,2,3) \quad \text { and } \quad \boldsymbol{b}=(3,-2,1)
$$

is

$$
\begin{aligned}
\boldsymbol{a} \cdot \boldsymbol{b} & =a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \\
& =1 \times 3+2 \times(-2)+3 \times 1 \\
& =3-4+3 \\
& =2
\end{aligned}
$$

Solution to Quiz:

The vector product of two vectors

$$
\boldsymbol{a}=(1,2,3) \quad \text { and } \quad \boldsymbol{b}=(3,-2,1)
$$

is

$$
\begin{aligned}
\boldsymbol{a} \times \boldsymbol{b}= & \left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
1 & 2 & 3 \\
3 & -2 & 1
\end{array}\right| \\
= & (2 \times 1-3 \times(-2)) \boldsymbol{i}-(1 \times 1-3 \times 3) \boldsymbol{j} \\
& +(1 \times(-2)-2 \times 3) \boldsymbol{k} \\
= & (2+6) \boldsymbol{i}-(1-9) \boldsymbol{j}+(-2-6) \boldsymbol{k} \\
= & 8 \boldsymbol{i}-(-8) \boldsymbol{j}-8 \boldsymbol{k}=8 \boldsymbol{i}+8 \boldsymbol{j}-8 \boldsymbol{k} .
\end{aligned}
$$

End Quiz

Solution to Quiz:

The vector field

$$
\boldsymbol{F}(x, y)=\frac{x}{y} \boldsymbol{i}+(2 x-3 y) \boldsymbol{j}
$$

has components $F_{1}(x, y)=\frac{x}{y}$ and $F_{2}=2 x-3 y$, so its divergence is

$$
\begin{aligned}
\nabla \cdot \boldsymbol{F}(x, y) & =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y} \\
& =\frac{\partial}{\partial x}\left(\frac{x}{y}\right)+\frac{\partial}{\partial y}(2 x-3 y) \\
& =\frac{1}{y}-3 .
\end{aligned}
$$

N.B. The divergence of a vector is a scalar.

Solution to Quiz:

The components of the vector field $\boldsymbol{F}(x, y, z)=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}$ are

$$
F_{1}=x, \quad F_{2}=y, \quad F_{3}=z
$$

and its curl is:

$$
\begin{aligned}
\boldsymbol{\nabla} \times \boldsymbol{F} & =\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right) \boldsymbol{i}-\left(\frac{\partial F_{3}}{\partial x}-\frac{\partial F_{1}}{\partial z}\right) \boldsymbol{j}+\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \boldsymbol{k} \\
& =\left(\frac{\partial(z)}{\partial y}-\frac{\partial(y)}{\partial z}\right) \boldsymbol{i}-\left(\frac{\partial(z)}{\partial x}-\frac{\partial(x)}{\partial z}\right) \boldsymbol{j}+\left(\frac{\partial(y)}{\partial x}-\frac{\partial(x)}{\partial y}\right) \boldsymbol{k} \\
& =0 \boldsymbol{i}-0 \boldsymbol{j}+0 \boldsymbol{k}=0
\end{aligned}
$$

N.B. A vector field with vanishing curl is called an irrotational vector field.

End Quiz

